Location-Based Activity Recognition with Hierarchical Dirichlet Process

نویسنده

  • Negar Ghourchian
چکیده

We consider the problem of analyzing people’s mobility and movement patterns from their location history, gathered by mobile devices. Human mobility traces can be extremely complex and unpredictable, by nature, which makes it hard to construct accurate models of mobility behavior. In this work, we present a novel high-level strategy for mobility data analysis based on Hierarchical Dirichlet process, which is a powerful probabilistic model for clustering grouped data. We evaluate our unsupervised approach on two real-world datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hier...

متن کامل

Human Action Recognition Using HDP by Integrating Motion and Location Information

The method based on local features has an advantage that the important local motion feature is represented as bag-of-features, but lacks the location information. Additionally, in order to employ an approach based on bag-of-features, language models represented by pLSA and LDA (Latent Dirichlet Allocation) have to be applied to. These are unsupervised learning, but they require the number of la...

متن کامل

Logical selection of potential hub nodes in location of strategic facilities by a hybrid methodology of Data Envelopment Analysis and Analytic Hierarchical Process: Iran Aviation case study

Hub facility location problem looks to find the most appropriate location for deploying such facilities. An important factor in such a problem is the pool of potential locations from which the optimal locations must be selected. The present research was performed to address two key objectives: identifying the factors contributing to the selection locations for hub establishment, and presenting ...

متن کامل

A Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity

Introduction: This paper proposes a reliable and efficient technique to recognize different epilepsy states, including healthy, interictal, and ictal states, using Electroencephalogram (EEG) signals. Methods: The proposed approach consists of pre-processing, feature extraction by higher order spectra, feature normalization, feature selection by genetic algorithm and ranking method, and classif...

متن کامل

Detecting Abnormal Events via Hierarchical Dirichlet Processes

Detecting abnormal event from video sequences is an important problem in computer vision and pattern recognition and a large number of algorithms have been devised to tackle this problem. Previous state-based approaches all suffer from the problem of deciding the appropriate number of states and it is often difficult to do so except using a trial-and-error approach, which may be infeasible in r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016